
Spectral Monte Carlo Denoiser

Spectral Monte-Carlo rendering allows the creation of 
physically accurate virtual prototypes by:
➢ Computing global illumination in the spectral domain

➢ Taking into account wavelength-
dependent phenomenons

But comes at the cost of significant computing time.

Efficient denoising methods could reduce this cost but:
➢ State of the art RGB denoising [1,2] is unable

to reconstruct spectral renders (see Fig. 1)

➢ Spectral domain denoising remains unexplored

Related Work
Three relevant architectures in state-of-the-art ML 
denoising :
➢ KPCN [3]: Kernel prediction

• Good high-frequencies reconstruction
• Sensitive to fireflies in references

➢ U-net [4]: Direct prediction
• Suited for high-variance inputs
• Loss of high-frequencies

➢ DEMC [5]: Direct prediction dual-encoder
• Separately encoded noisy and auxiliary features 

to reduce redundancy
• Loss of informations not represented in 

auxiliary features (such as specular reflections)

Loss function and metrics:
➢ Pixel-per-pixel (MSE, RMSE, NRMSE, etc.)

• Sensitive to fireflies in training

➢ Structural (SSIM, MS-SSIM, etc.)
• Prone to color shifts in training

➢ High-dynamic range pixel-per-pixel (SMAPE)
• More suited for spectral values
• Good color conservation in training

➢ Perceptual (LPIPS)
• Limited to RGB space
• Closer to human perception

Our Deep Learning based denoising method operates
the reconstruction in the spectral domain with the
assumption that corrected radiometric values result in
corrected photometric values.

A discretization of the light spectrum into n parts, called 
n-bins, is obtained from the renderer. These n-bins 
(where n=16) are then individually denoised before
reconstructing the final RGB output.

Training used the SMAPE loss function and 4554 pairs of 
noisy/ground truth with 1024 (noisy) and 4M (Ground 
truth) samples-per-pixel.

Our evaluation compares our results with established off-
the-shelf denoisers, both visually and using metrics.

Pipeline in Fig. 2 structured into 6 parts:
➢ Output of the spectral renderer (noisy discretized spectral

bins, normals, depth and spectral albedo).

➢ Principal Component Analysis (PCA) on the spectral bins to
compute a low-dimensional representation for context
preservation. We combined the k-first PC (i.e. ≈95% of the 
variance with k=3).

➢ Auxiliary features concatenation (normal, depth, albedo, k-PC).

➢ Dual encoding denoising network inspired by the DEMC [5],
our Light Spectrum Features Denoiser (LSFD) reconstructs
each bin separately with the help of auxiliary features.

➢ Second estimator Details Sharpener (DS), derived from the DC
[6], which reinjects high-frequency details from the albedo.

➢ Riemann integration to reconstruct a displayable RGB output.
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Noisy OptiX RGB λ λ+PCA λ+PCA+DS GT

0.2405 0.1260 0.0815 0.0685 0.0473 0.0538

0.2204 0.1954 0.3263 0.0358 0.0334 0.0310

0.1340 0.0603 0.0752 0.0737 0.0617 0.0451

Method Bathroom Bedroom Kitchen

OptiX 0.0231 0.0053 0.0679

λ 0.0084 0.0209 0.0328 

λ+PCA 0.0074 0.0175 0.0312

λ+PCA+DS 0.0164 0.0091 0.0265

Table 1: LPIPS metric to measure perceptual gain.

Figure 3: Crops taken from three scenes denoised with various methods. From top to bottom : Bathroom, 
Bedroom and Kitchen. From left to right: noisy, OptiX, RGB domain (RGB), Spectral domain : LSFD without PCA
(λ), with PCA (λ+PCA), and with DS (λ+PCA+DS). NRMSE was used as the evaluation metric.

While our solution is able to reconstruct highly-noised inputs, complex scenes such as displayed here still require too many samples to 
denoise at an interactive frame-rate. Moreover, our solution suffers from a bigger loss in high-frequency details compared to OptiX. In 
order to explore its limitations, we plan to integrate more complex scenes (iridescence, volume rendering, etc.) into our tests.

Dataset: 4554 set of 1024x768 images (noisy, GT, 
auxiliary features). Generation time: 3 months, size: 
1.8 TB

Training: ≈3 days on NVIDIA A100 for 5,000 epochs. 
For each epoch, inputs are randomly cropped into 
64x64 images. Training took approximately 40 
seconds per epoch, divided into 30 seconds to create 
the crop dataset and 10 seconds for inference, giving 
a total over 5000 epochs of 1.7 days for crop dataset 
creation and 1.3 days for inference.

Evaluations: Fig. 1 and 3 show the improvement of 
our pipeline compared to OptiX. We are better able 
to reconstruct low-frequency areas, remove the color 
noise and predict the correct hue of the ground truth 
(GT). Metrics also support these results. Our final 
method (λ+PCA+DS) yields lower NRMSE values for 
all scenes, with each step of the pipeline decreasing 
the value in most cases. We get an average gain of 
about 0.0842 overall. Let’s note that RGB solutions 
are less performant (red number).

Furthermore, Tab. 1 displays the same observation 
for the LPIPS value, except for the Bedroom scene, 
which can be explained by the absence of color shift 
between noisy and GT and the predominance of 
high-frequency details, better handled by OptiX.

The inference time of all these methods is ≈0.02 ms.
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Figure 2: Overview of our spectral denoiser
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Figure 1: Visual comparison of different denoisers on Kitchen scene. From left to 
right: Noisy, OptiX, ours (λ+PCA+DS), Ground truth, and crops: OptiX (top), ours 
(bottom).
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